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Abstract. The immediate impulsive flow of an incompressible fluid due to a concentrated flux through an other-
wise impermeable boundary is investigated analytically in three dimensions. The flow is inviscid and irrotational,
and obeys the equipotential condition at the free surface, which is initially horizontal. Various elementary bottom
geometries are analyzed: rectangular basins, sloping beaches, semi-cylindrical and hemispherical basins. Special
attention is paid to the case of impulsive free-surface flows generated on a uniform sloping beach. A general
integral solution is presented and compared against a series solution found for a discrete set of angles. The results
are relevant for the modeling of tsunami generation due to rapid bottom deflections.
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1. Introduction

The present paper is devoted to three-dimensional free-surface flows forced by impulsive bot-
tom deflections. The considered limit of very rapid bottom deflection means that this process
takes place during a time interval much shorter than the gravitational time scale. In this limit,
where gravity can be neglected, the free surface will be at rest after the bottom deflection
has ceased, and the equipotential condition may be applied at the initially horizontal free
surface. This deformed surface is then released from rest, serving as the initial value in a
three-dimensional Cauchy-Poisson like problem. If a rapid normal deflection of the bottom is
specified, the resulting surface elevation can be obtained from the present theory, by assuming
that linear theory is valid. This can be done by integrating up in time the fluid velocity normal
to the free surface. Such a model is relevant for studying the early stages of tsunami generation.
A similar study of two-dimensional flows has been published in [1]. The present paper is only
concerned with the initial flow governed by the equipotential condition at the free surface. But
it is also possible to follow the evolution in time analytically by using a small-time expansion.
Such an analysis for a nonlinear problem has been carried out in a number of works [2]–[7]
related to submerged sources/sinks. A corresponding 3D initial free-surface problem due to
a submerged spherical explosion, formulated as a mixed boundary-value problem has been
recently solved by [8]. For a sloping beach a 2D gravity dependent Green function has been
considered in [9] and [10].

The structure of the paper is as follows. In Section 2 we formulate the general linear
boundary-value problem and define the so-called impulsive free-surface velocity Green func-
tion. It is then showed how one can relate the initial free-surface elevation to an arbitrary
impulsive bottom deflection of the basin. In Section 3 we present some particular analytic
solutions of Green functions for some selected geometries which consist of plain boundaries.
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These Green functions should not be confused with the traditional gravity dependent Green
function which has been extensively investigated in the past (see for example [11], and oth-
ers). In Section 4 we consider in some detail the case of a sloping beach. First, using the
Kontorovich-Lebedev integral representation, we give a general solution which is valid for
any slope. Then, we compare it with the solution obtained from the method of successive
images found for some particular slope angles, namely α = π/2n, where n is an integer. It is
proven analytically that these two independent solutions are indeed identical. Also obtained
are asymptotic solutions for the wave elevation which hold for small slope angles and near
the shore line, where the water depth tends to zero. We conclude the analytic part of the paper
by including two practical cases which involve curved boundaries: a semi-circular geometry
which corresponds to an infinitely long half filled circular pipe and a semi-spherical shape
which models a half-filled spherical container.

2. Formulation of the general problem

We consider the free-surface flow generated by a volume flux Q through a finite area A located
on an impermeable rigid boundary. The fluid is inviscid, incompressible and its motion is
irrotational. A Cartesian coordinate system Oxyz is introduced, with the Oxy plane taken in
the undisturbed free surface, whereas the z axis points vertically upwards.

We define the total volume flux as:

Q(t) =
∫ ∫

A

q(x, y, z, t) dA, (1)

where q(x, y, z, t) is the discharge of a surface point source depending on time t .
The velocity potential �(x, y, z, t) satisfies Laplace’s equation

∇2� = 0, (2)

and the following boundary condition on the rigid boundaries:

∂�

∂n
=

{
0 (x, y, z) /∈ A

q (x, y, z) ∈ A
, (3)

where n is the normal to the rigid boundary at the location of the source and directed into the
fluid.

The full nonlinear boundary conditions at the free surface are:

∂η

∂t
+ ∇� · ∇η = ∂�

∂z
, z = η(x, y, t) (4)

∂�

∂t
+ 1

2
|∇�|2 + gz = 0, z = η(x, y, t), (5)

where the surface elevation is denoted by η(x, y, t).
It is assumed here that the forcing of boundary flux occurs during a short time interval t0

which is much smaller than the gravitational time scale T :

t0 � T , T = √
H/g, (6)
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where H denotes the characteristic submergence of the source, and g is the acceleration of
gravity. A basic requirement for linearizing the free-surface boundary condition is as follows
[1]:∫ t0

0
Q(t) dt � H 3. (7)

It represents all of the bottom which is subject to nonzero flux. Since the up-welling region for
the impulsive source flow at the free surface has a length scale H both in x and y direction,
we see that the inequality (7) means that the surface peak is much shorter than the dominating
wavelength. This is the usual linearization condition for water waves, and it is well satisfied for
tsunami generation at typical ocean depths [12]. Thus, when the requirements (6) and (7) are
satisfied, the boundary conditions (4) and (5) can be linearized to give the infinite-frequency
limit of linearized water-wave theory [13]:

∂η

∂t
= ∂�

∂z
, z = 0, (8)

�(x, y, 0, t) = 0, 0 < t < t0. (9)

The problem formulated in (2) and (8)–(9) is linear. Thus, the layout geometry, the strength
of the sources, and the impulsive Green function G(x, y, z; x0, y0, z0) define the general
solution:

�(x, y, z, t) = 1

2π

∫ ∫
A

G(x, y, z; x0, y0, z0)q(x0, y0, z0, t) dA. (10)

The impulsive Green function G(x, y, z; x0, y0,z0) is defined in the lower half plane z < 0
by the boundary value problem

∇2G = 0, (11)

G(x, y, 0; x0, y0, z0) = 0, (12)

∂G

∂n
= 2πδ(x − x0)δ(y − y0)δ(z − z0) on A (13)

and a proper decay at infinity. This Green function can be represented as a sum of the singular
and regular parts as follows:

G = − 1

R− +H, (14)

where

R− =
√
(x − x0) + (y − y0)2 + (z − z0)2, (15)

and H(x, y, z; x0, y0, z0) is a regular harmonic function satisfying the boundary conditions
(12) and (13). Integrating up the linearized kinematic condition (8) we get the expression for
the free-surface elevation:

η(x, y, t) = 1

2π

∫ ∫
A

W(x, y; x0, y0, z0)χ(x0, y0, z0, t) dA, (16)
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Figure 1. System of coordinates and general notations.

where

χ(x, y, z, t) =
∫ t

0
q(x, y, z, τ ) dτ (17)

and

W(x, y; x0, y0, z0) = ∂

∂z
G(x, y, z; x0, y0, z0)

∣∣∣∣
z=0

. (18)

The function W is named here as the impulsive free-surface velocity Green function. It is
defined by two scaling parameters namely, the source strength scaling parameter Q0 and some
typical length scale L. Thus, the dimensionless free-surface velocity Green function ζ can be
represented as:

ζ = W

Q0/L2
. (19)

The choice of the relevant length scale depends on the particular problem, and is a matter of
convenience. For instance, considering an infinitely deep water bounded by a vertical wall, L
must be identified as the submergence depth of the wall source. In the case of an infinite deep
water, bounded by two vertical walls, it may be pertinent to choose the characteristic length
as a distance between the walls rather than the submergence of the source. In the case of a
sloping beach the characteristic length can be defined along the bottom as a distance of the
source from the waterline (see Figures 1–3). Herein, in each particular situation we explain
the physical meaning of the typical length scale.

3. Green function: particular cases

For some particular geometries the Green function can be constructed by using certain images
of the basic singularity in such a way that the required boundary condition on the free surface
and rigid boundaries are satisfied. Only seven representative cases are illustrated in this sec-
tion. For the sake of brevity we omit the detailed derivations of the expressions for the Green
functions G and give only the final results for the free surface velocity Green function W .

• Uniform layer of constant depth h. The source with coordinates (0, 0,−h) is located on
the bottom (Figure 2a):

W(x, y; 0, 0,−h) =
∞∑

n=−∞

(−1)n(2n − 1)h[
x2 + y2 + (2n − 1)2h2

]3/2 . (20)
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Figure 2. System of the base source and its corresponding images: a) – horizontal bottom; b) – inclined bottom,
α = π/2n, (n = 1, 2, . . . ); here n = 3.

• Beach with slope angle α = π/2l, (l–integer). The source with coordinates (r0 cos α, 0,
−r0 sinα) is located on the slope (Figure 2b):

W(x, y; r0 cos α, 0,−r0 sin α) =
2l−1∑
n=0

(−1)nr0 sin(2n + 1)α[
x2 + r2

0 + y2 − 2xr0 cos(2n + 1)α
]3/2 . (21)

• Two parallel vertical walls separated by a distance b. The source with coordinates
(0, 0, z0) is located on a wall (Figure 3a):

W(x, y; 0, 0, z0) = −
∞∑

n=−∞

2z0[
(x + 2nb)2 + y2 + z2

0

]3/2 . (22)
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Figure 3. Particular cases which can be obtained by summation of images of the base source.

• Two vertical walls intersecting at a right angle. The source with coordinates (x0, 0, z0)

is located on a wall (Figure 3b):

W(x, y; x0, 0, z0) = −
1∑

n=0

2(−1)nz0{
[x + (−1)nx0]2 + y2 + z2

0)
}3/2 . (23)

• A vertical wall making an angle π/3 with another vertical wall. The source with coordi-
nates (x0, 0, z0) is located on a wall (Figure 3c):

W(x, y; x0, 0, z0) = − 2z0[
(x − x0)2 + y2 + z2

0

]3/2

−
1∑

n=0

2z0{
(x + x0/2)2 + [y + (−1)n

√
3x0/2]2 + z2

0

}3/2

(24)

• Beach with slope angle π/4 along the wall. The source with coordinates (r0/
√

2,
y0,−r0/

√
2) is located on the slope (Figure 3d):
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W(x, y; r0/
√

2, y0,−r0/
√

2) = −
1∑

n=0

1∑
m=0

(−1)n
√

2r0{[
x+(−1)nr0/

√
2
]2+[

y+(−1)my0
]2 + r2

0/2

}3/2 .

(25)

• Beach with slope angle π/4 between two walls of distance b apart. The source with
coordinates(r0/

√
2, 0,−r0/

√
2) is located on the slope (Figure 3e):

W(x, y; r0/
√

2, 0,−r0/
√

2) = −
1∑

n=0

∞∑
m=−∞

(−1)n
√

2r0{
[x + (−1)nr0

√
2]2 + (y +mb)2 + r2

0/2
}3/2 .

(26)

For the case of a uniform depth h (Equation (20), Figure 2a) the free-surface velocity Green
function can be represented also as an integral:

W(x, y; 0, 0,−h) =
∫ ∞

0
λ sech λh J0(λ

√
x2 + y2) dλ, (27)

where J0 is the Bessel function. By expanding sechλh into series of powers of exp(−λh) and
by a consequent analytic integration of (27) we can show that the integral (27) and the series
(20) are identical [14, Appendix 1].

3.1. NUMERICAL EXAMPLE

As illustrative examples, expressions (22) and (26) were calculated numerically and compared
in Tables 1–2 with the corresponding two-dimensional solutions for a two-dimensional source
of unit strength. For the case (22) the two-dimensional limit can be written as [6]:

W2D(y; 0, z0) = − 2z0

y2 + z2
0

(28)

and

W 0
2D ≡ W2D(y; 0, z0)|y=0 = − 2

z0
(29)

For the case (26) the corresponding series converges towards the following solution given
in [1], for r0 � 1:

W2D(x; r0/
√

2) = 2πξπ/2α−1

αr0(1 + ξπ/α)
, (30)

where ξ = x/r0, and α = π/4. For the simple case ξ = 1, (30) yields:

W 0
2D = W2D(x; r0/

√
2)

∣∣∣
x=r0

= 4

r0
. (31)

It should be noted that the obtained series of images may exhibit slow convergence. Al-
though it can be improved [11], we do not discuss here this numerical aspect. Employing a
double precision arithmetic (16 digits), allow us to perform the illustrative calculations without
any special difficulties.

The convergence of the three-dimensional solutions into the two-dimensional asymptotic
limit solutions can be interpreted as a corresponding Saint-Venant principle for a potential
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flow. This principle is well-known in elasticity theory [15, p. 131], where it tells us that the
torsion field in a slender beam is governed by the integrated inhomogeneity (the net torque)
applied at its ends. The details of the shear stress distribution at the ends of a slender beam do
not matter at distances more than five cross section diameters, and only the net torque matters.

In the present flow problem, the inhomogeneity (i.e., the source causing the flow) which is
distributed over the channel width, will influence the solution only as an integrated quantity
(total source flux) at distances of the order of several length units.

4. Uniform beach with arbitrary slope

4.1. GREEN FUNCTION

We will now consider a uniform beach with a constant slope α (Figure 1). As above, we
take the source to be situated in the x, z plane, at a distance r0 down the slope. Introducing
cylindrical coordinates

x = r cos θ, z = −r sin θ, (32)

we can write the governing equation for the regular potential as follows:

1

r

∂

∂r

(
r
∂H

∂r

)
+ 1

r2

∂2H

∂θ2
+ ∂2H

∂y2
= 0. (33)

The particular solution Hkτ(r, y, θ) of this equation which is bounded for r = 0 and r →
∞ is the following [16]:

Hkτ = Kiτ (kr)

{
cosh τ θ

sinh τ θ

} {
sin ky

cos ky

}
, (34)

for given k and τ, where Kν denotes the modified Bessel function of the second kind and of
order ν.

Recalling that the general solution is written as (14), and noting that on the beach (except
at the source point)
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∂

∂n
(

1

R− ) = 0, (35)

it follows that the regular potential H obeys the condition (3) of zero normal velocity at the
slope, i.e.,

∂H

∂θ
= 0, θ = α. (36)

This allows us to construct the general solution satisfying (36) in the form of the Kontorovich-
Lebedev integral:

H(r, y, θ; r0, 0, α) = 2

π

∫ ∞

0

∫ ∞

0
A(k, τ)

cosh[(α − θ)τ ]
cosh(ατ)

cos ky Kiτ (kr) dk dτ, (37)

where A(k, τ) is to be determined from the boundary conditions. Use of the equipotential
boundary condition (11) at z = 0 (θ = 0) gives the expression:

2

π

∫ ∞

0

∫ ∞

0
A(k, τ) Kiτ (kx) cos ky dτ dk = 1√

(x − x0)2 + y2 + z2
0

. (38)

Thus, applying to (38) the Fourier cosine transform we find:∫ ∞

0
A(k, τ)Kiτ (kx) dτ =

∫ ∞

0

cos ky√
(x − x0)2 + y2 + z2

0

dk = K0

[
k

√
(x − x0)2 + y2 + z2

0

]
. (39)

Following [16], the above integral equation can be inverted analytically, leading to:

A(k, τ) = 2

π
cosh[(π − α)τ ]Kiτ (kr0), (40)

where r2
0 = x2

0 + z2
0. Finally, we end up with the following expression for the Green function:

G(x, y, z; x0, 0, z0) = − 1√
r2 + r2

0 + y2 − 2rr0 cos(α − θ)

+ 2

π

∫ ∞

0

∫ ∞

0

cos τs cosh[(π − α)τ ] cosh[(α − θ)τ ]
cosh ατ

√
r2 + r2

0 + y2 + 2rr0 cosh s
dτ ds.

(41)

An alternative form of this Green function, which will be used below, can be obtained by
invoking the following relation [16]:∫ ∞

0

cos τs ds√
r2 + r2

0 + y2 + 2rr0 cosh s
= 1√

2rr0 sinh πτ

∫ ∞

λ

sin τs ds√
cosh s − cosh λ

, (42)

where

cosh λ = r2 + y2 + r2
0

2rr0
. (43)

It finally leads to:

H = 2

π
√

2rr0

∫ ∞

λ

ds√
cosh s − cosh λ

∫ ∞

0

cosh [(α − θ)τ ] cosh [(π − α)τ ]

sinh πτ cosh ατ
sin τsdτ (44)
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which is used for further analytic calculations.

4.2. SURFACE VELOCITY GREEN FUNCTION

By invoking (44), the surface velocity Green function W is defined as:

W = ∂

∂z

(
− 1

R−

)∣∣∣∣
z=0

+ 2

πx
√

2xr0

∫ ∞

λ

ds√
cosh s − cosh λ

×
∫ ∞

0

τ sinh ατ cosh[(π − α)τ ]
sinh πτ cosh ατ

sin τs dτ.

(45)

Consider first the inner integral in (45) which can be represented as

I = 1

2
Im

∫ ∞

−∞
f (τ)eisτdτ, (46)

where

f (τ) = τ
sinh ατ

coshατ

cosh[(π − α)τ ]
sinhπτ

. (47)

This integral can be calculated explicitly. For this purpose we choose the contour of inte-
gration in the upper complex half-plane ψ = τ + iτ1 along the real axis, along the semi-circle
of infinitely large radius which connects the ends of the real axis, and along the semi-circle
of infinitely small radius in the center at the origin of the real and complex axes (Figure 4a).
Since limτ→0 f (τ) = 0 and limτ→∞ f (τ) = 0 it follows from Jordan and Cauchy theorems
that the integrals along the semi-circles vanish, and that the integral along the real axis is equal
to the sum of the residues inside the chosen contour multiplied by 2π i.

To calculate the residues we note that in the complex plane ψ the integrand (47) has single
poles at the roots of the equations:

sinhπτ = 0, τk = ik, k = (1, 2, . . . ), (48)

coshατ = 0, τn = 2n + 1

2α
π i, (n = 0, 1, . . . ). (49)

It should be noted that for some particular angles α = (2n+1)π/k, the singularities inside
the contour of integration may not be isolated. However, we tacitly assume that these points
are excluded from consideration.

The integral I can be represented as a sum of two integrals, I = Ik + In, where the
subscripts relate to the roots τk and τn, correspondingly. After calculating the residues, we
obtain:

Ik = −
∞∑
k=1

k e−ks sin kα, (50)

In = π2

2α2

∞∑
n=0

(−1)n(2n + 1)e−(2n+1) πs2α . (51)

These series can be calculated in a closed form [17, Equation 5.4.12], which gives:
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Figure 4. Contours of integration.

Ik = sinα

2

sinh s

(cosh s − cos α)2
, (52)

In = π2

4α2

sinh(πs/2α)

cosh2(πs/2α)
. (53)

Substituting (52) and (53) in (45) and performing one analytic integration we obtain the
following expression for the impulsive free-surface velocity Green function for a uniform
sloping beach:

W = π

2x
√

2xr0α2

∫ ∞

λ

sinh(πs/2α)

cosh2(πs/2α)

ds√
cosh s − cosh λ

. (54)

This result is continuous with respect to α, therefore it is valid for any 0 < α ≤ π .

4.3. PARTICULAR CASE α = π/2l, (l-INTEGER)

Consider next the integral
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B =
∫ ∞

λ

sinh(πs/2α)

cosh2(πs/2α)

ds√
cosh s − cosh λ

(55)

taken in the complex plane s + is1 along the contour C which is shown in Figure 4b. Its
integrand has second-order poles on the imaginary axis at points which are defined by the
roots of the equation:

cosh
πs

2α
= 0, sm = 2m + 1

2l
πi, (m = 0, 1, . . . ). (56)

These poles are surrounded by semi-circles of infinitely small radius. Each integral along
the semi-circle is equal to the residue in the pole multiplied by −π i. Since the imaginary
poles are located within the range Im sm ≤ 2π , it follows that the number of poles inside the
contour is finite and less than 2l − 1. On the imaginary axis (excluding the poles) the integral
is imaginary. It is also imaginary on the intervals [0, λ] and [2π i, λ + 2π i], correspondingly.
Since the hyperbolic function has a period 2πi, the integrals on the lower cut (λ+ i0,∞+ i0)
and the upper cut [∞ + 2π(i − 0)], λ + 2π(i − 0) are equal. This allows us to represent the
integral B as:

B = π i

2

2l−1∑
m=0

Res|s=sm . (57)

Calculating these residues leads to

Res|s=sm = −1

2β2

sinh γ

(cosh γ − a)3/2 sinh βγ

∣∣∣∣
γ=(2m+1)αi
β=π/2α

, (58)

and, thus, (54) can be written as the following sum

W = 1

2x
√

2xr0

2l−1∑
m=0

(−1)m sin(2m+ 1)α

[cosh λ − cos(2m+ 1)α]3/2 . (59)

It can be easily seen that the two independent expressions, i.e., (21) obtained by the method
of images, and (59) which is calculated as a particular case of the more general solution, are
identical.

4.4. ASYMPTOTIC EXPRESSIONS OF THE SURFACE VELOCITY GREEN FUNCTION

For λ/α � 1 it follows that exp(−πλ/2α) � 1. In such a case the expression for the free
surface Green function (59) can be calculated in a closed form [18, Equation 4.9.23]:

W = 1

x
√

2xr0

π

α2

∫ ∞

λ

exp(−πs/2α) ds√
cosh s − cosh λ

= π

x
√
xr0α2

Qν(cosh λ), (60)

where ν = π/2α − 1/2 and Qν is the Legendre function of the second kind. This expression
can be used to calculate the free-surface velocity Green function for any angles α � λ, where
λ is defined by (43).

Consider the asymptotics behavior of Qν(cosh λ) for small α (ν � 1) and finite λ. For
λ > log

√
2 the asymptotic of the Legendre function is given by [19, Equation 8.723.2]:

Qν(cosh λ) ∼ √
π

8(ν + 1)

8(ν + 3/2)

e−(ν+1)λ

(1 − e−2λ)1/2 2F1

(
1

2
; 1

2
; ν + 3

2
; 1

1 − e2λ

)
, (61)
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where 2F1 denotes the hypergeometric function. For large ν it behaves as [20, Equation
2.3.2.10]:

2F1

(
1

2
; 1

2
; ν + 3

2
; 1

1 − e2λ

)
∼ 1 + (1/2)(1/2)

ν + 3/2

1

1 − e2λ
, (62)

Estimating the ratio 8(ν + 1)/8(ν + 3/2) as ν−1/2, for small α we obtain:

W ∼ π

x

√
1

xr0 sinh λ

e−πλ/2α

α3/2
(63)

It is seen now that for small angles α the free-surface velocity Green function exhibits a
boundary layer behavior with an exponential decay.

For small x the parameter λ, defined by (43), is large. In such a case the asymptotic
behavior of the Legendre function is given by a relation [19, Equation 8.766.2]:

Qν(cosh λ) ∼
√
π

2

8(ν + 1)

8(ν + 3/2) coshν+1 λ
, (64)

which leads to the following asymptotic expression for the free-surface velocity Green func-
tion:

W ∼ 2π3/2

r2
0α

2

8(ν + 1)

8(ν + 3/2)

ξπ/2α−1(
1 + η2

)π/2α+1/2 . (65)

Here ξ = x/r0 and η = y/r0. Thus, near the shore line (x � 1) for any α < π/2 the free-
surface velocity W decays to zero; for α = π/2 it is finite, and for π/2 < α ≤ π it is singular
(compare with Equation 30).

4.5. NUMERICAL EXAMPLES

We conclude this section by some numerical examples. The integrand of (55) is a smooth
function, except at the lower limit of integration, where it contains an integrable singularity.
In our computations this point was isolated in the small vicinity of λ, where the integration was
performed analytically. The remaining integral was computed by using the Romberg scheme.

Figure 5a is a comparison between the computed results of the surface velocity by invok-
ing (54) and (59) which appears to be in a good agreement. In Figure 5b the same data are
compared against the asymptotic solution (60) where it is shown that for small sloping angles
the asymptotic expression is quite accurate. In Figure 6, a 3D plot of the free-surface velocity
is shown. It is seen that the free surface velocity decays exponentially with respect to small α
and small x. Its maximum appears approximately above the source.

5. Curved basins

We consider in the sequel two basic types of curved basins: a cylindrical basin with a semi-
circular cross section, and an hemi-spherical basin.
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Figure 5. Free-surface velocity ζ = Wr2
0/Q0 for a source Q0 located at ξ = x/r0 = 0·88, η = y/r0 = 0. Solid

line: numerical integration of the integral representation (54) which is valid for any α. Symbols: (a) finite sum (21)
which is valid for α = π/2n, n-integer; (b) asymptotic expressions.

5.1. THE SEMI-CIRCULAR CYLINDRICAL BASIN

We derive the solution for a special cylindrical basin: the cross-section is a semi-circle of
radius a. The y axis is directed along the axis of the infinitely long cylinder. We introduce
θ as the angle in cylindrical coordinates (r, θ, y) where x and z are represented by (32). We
will consider a source in the point (x0, y0, z0) = (a cos θ0, 0,−a sin θ0). The Green function
is composed of the following three contributions:

G(x, y, z; x0, 0, z0) = −
1∑

m=0

(−1)m√
(x − x0)2 + y2 + [z − (−1)mz0]2

+H(x, y, z; x0, 0, z0). (66)

The function H is regular and harmonic for r ≤ a. We choose to express it in such a form
that H = 0 for z = 0 (θ = 0):

H(x, y, z; x0, 0, y0) =
∞∑
n=1

sin nθ
∫ ∞

0
An(k)In(kr) cos ky dk. (67)

Here In denotes the modified Bessel function of the first kind and of order n. The coefficients
An are to be chosen to satisfy the boundary condition:
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Figure 6. Free-surface velocity ζ = Wr2
0 /Q0 for a source of strength Q0 as a function of ξ = x/r0 and η = y/r0:

(α = π/10 = 18◦).

∂H

∂r
= ∂

∂r

(
1

R− − 1

R+

)
r=a

, (68)

where

1

R∓ = 1√
(x − x0)2 + (y − y0)2 + (z ∓ z0)2

. (69)

To express (69) in an integral form, a well-known expansion can be applied:

1

R∓ = 2

π

∫ ∞

0
K0

[
k
√
(x − x0)2 + (z ∓ z0)2

]
cos ky dk (70)

Next, we use the addition theorem for Bessel functions, valid for r ≤ a:

K0

[
k
√
(x − x0)2 + (z ∓ z0)2

]
=

∞∑
n=0

εn cos n(θ ∓ θ0)Jn(kr)Kn(ka). (71)
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where εn = 1 for n = 0, εn = 2 for n > 0, and Jn denotes the Bessel function of the first
kind. Application of the Neumann boundary conditions (68) and the orthogonality properties
finally leads to:

G(x, y, z; x0, 0, z0) = −
1∑

m=0

(−1)m√
(x − x0)2 + y2 + [z − (−1)mz0]2

+ 4

π

∞∑
n=1

εn sin(nθ) sin(nθ0)

∫ ∞

0

In(kr)J
′
n(ka)Kn(ka)

I ′
n(ka)

cos ky dk,

(72)

where the prime (′) denotes differentiation with respect to the argument. The normal derivative
of G at the free surface is then given by:

W(x, y; x0, 0, z0) = − 2z0[
(x − x0)2 + y2 + z2

0

]3/2 +

8

πx

∞∑
n=1

sgnn+1(x) n sin(nθ0)

∫ ∞

0
In(kx)

J ′
n(ka)

I ′
n(ka)

Kn(ka) cos ky dk.

(73)

It should be noted that the above integral is non-singular for x = 0 (shore-line).

5.2. THE HEMI-SPHERICAL BASIN

As a final example we derive the solution for a hemispherical basin of radius a where the
undisturbed free surface is given by z = 0. We introduce spherical coordinates (R, θ, φ) by
defining:

z = R cos θ, x + iy = R eiφ sin θ, (74)

where R denotes the radial spherical coordinate. Since z < 0, the range of variation in the
fluid domain is π/2 < θ < π and 0 < φ < 2π .

Let us consider a source located on the hemi-sphere at the point (x0, y0, z0). The Green
function is composed of three contributions:

G(x, y, z; x0, y0, z0) = − 1

R− + 1

R+ +H(x, y, z; x0, y0, z0). (75)

Here H is regular and harmonic for R ≤ a. It obeys the condition H(x, y, 0; x0, y0, z0) = 0.
On the impermeable spherical wall we have the boundary condition:

∂H

∂R
= ∂

∂R
(

1

R− − 1

R+ ). (76)

We express the source field and its image in terms of the Legendre functions [21]:

1

R∓ =
∞∑
n=0

n∑
m=1

εn
(n −m)!
(n +m)!

Rn

an+1
Pm
n (cos θ)Pm

n (± cos θ0) cosm(φ − φ0) (77)

= 1√
R2 + a2 − 2aR(± cos θ cos θ0 + sin θ sin θ0 cos(φ − φ0))

, (78)

Using (77), the boundary condition (76) can be expressed as:
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∂

∂R

[
1

R− − 1

R+

]
R=a

= 2

a2

∞∑
n=0

n∑
m=1

n
(n−m)!
(n+m)!

×Pm
n (cos θ)

[
Pm
n (cos θ0)− Pm

n (− cos θ0)
]

cosm(φ − φ0)

= 2

a2

∞∑
n=0

n∑
m=1

n
(n−m)!
(n+m)!

[
1 − (−1)n−m

]
×Pm

n (cos θ)Pm
n (cos θ0) cosm(φ − φ0).

(79)

For H(x, y, z; x0, y0, z0) we select a general interior spherical harmonic given by:

H(R, θ, φ; a, θ0, φ0) =
∞∑
n=0

n∑
m=1

εn
(n −m)!
(n +m)!

[
1 − (−1)n−m

]

× Rn

an+1
Pm
n (cos θ)Pm

n (cos θ0) cosm(φ − φ0),

(80)

which clearly satisfies (76) and H(R, π/2, φ; a, θ0, φ0) = 0. Since (d/dµ)Pm
n (µ)|µ=0 =

−(n−m + 1)Pm
n+1(0), its normal derivative at the free surface is found as:

W(x, y; x0, 0, z0) = − 2z0

((x − x0)2 + y2 + z2
0)

3/2

−2
∞∑
n=0

n∑
m=1

εn(n− m+ 1)!
(n +m)!

[1 − (−1)n−m]Rn−1

an+1

×Pm
n (0)P

m
n (cos θ0) cosm(φ − φ0).

(81)

It is also possible to express Pm
n (0) in terms of the Gamma function [19, p. 1009].

6. Concluding remarks

Some basic Green functions for impulsive tsunami generation in three dimensions have been
derived analytically. The equipotential condition is assumed to be valid at the free surface
throughout the tsunami generation process. This requires a time scale shorter than the gravi-
tational time scale for the local depth.

Rectangular geometries have been treated by using the image method. There is also an
image solution given by n sources plus n sinks for a uniform sloping beach of angle π/(2n),
where n is a positive integer. The connection between this particular simple solution and the
general integral solution, which is valid for any slope, has been analytically established. It is
interesting to note that the impulsive Green function for a uniform slope decays exponentially
to zero both for small α and small x. We have analyzed three more complicated cases: a beach
with an arbitrary slope angle, a semi-cylindrical basin with a circular cross-section, and a
hemi-spherical basin.

We have introduced the time-dependent bottom deflection χ(x, y, z, t) measured in the
normal direction. Our linearized theory implies that the vertical velocity at the initially hori-
zontal bottom is given by w = ∂χ/∂t . A second-order nonlinear condition on such a bottom
could be given by: w = ∂χ/∂t + ∇ · (χ∇H�), where ∇H denotes the horizontal gradient
operator.
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From this condition one might evaluate the leading nonlinear correction to the linearized
bottom condition, assuming that the impulsive bottom deflection χ(x, y, z, t) is specified.
However, in the present work we are only concerned with impulsive Green functions for the
fully linearized problem. The incorporation of weak nonlinearities at the bottom is left for
future work.
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